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The boundary layer is created on an infinite flat, plate by a time-dependent free- 
stream velocity vector, whose magnitude is independent of time but whose direction 
(as seen in plan view) changes at  a constant angular velocity. The pressure gradient, 
a t  right angles to the free-stream velocity, induces a skewing of the velocity profile ; 
all components of the Reynolds-stress tensor are non-zero (using axes aligned with 
the wall and the flow direction). This flow has never been produced experimentally, 
but it has the merit of being simply defined and of having only the Reynolds number 
as a parameter, which greatly simplifies the analysis. The flow is studied theoretically 
using Reynolds-number scaling laws, and by direct numerical simulation over a 
range of Reynolds numbers. The simplest version of the theory is equivalent to  
existing theories of the Ekman layer. A higher-order version is presented and yields 
excellent agreement with the numerical results at three Reynolds numbers, with just 
one adjustable constant in each equation. The theory allows the extrapolation of the 
results to high Reynolds numbers. The Reynolds-averaged equations reduce to a 
one-dimensional steady problem, so that turbulence-model testing will be easy and 
accurate. Detailed data are provided for that purpose. 

1. Introduction 
We consider one of the simplest situations that can produce a boundary layer with 

three-dimensional statistics. A set of boundary conditions is described below that 
could be accommodated with our existing numerical method and allowed a fairly 
simple presentation of the results, but produced a flow with a skewed velocity profile 
and a full Reynolds-stress tensor. The direct simulations conducted until now 
included, of course, three dimensional fluctuations. However, their bocndary 
conditions and therefore their turbulence statistics had a mirror-image symmetry in 
the x direction (for instance, the mean spanwise velocity and some elements of the 
Reynolds-stress tensor had to be zero by symmetry). There is now a drive to 
investigate in depth flows that are three-dimensional in the mean, because the flows 
of interest (planetary boundary layer, swept wings, curved ducts, and so on) are 
often strongly three-dimensional, and also because of the desire to extend and test 
some aspects of turbulence theory in more general situations (see the review by 
Bradshaw 1987). 

The flow under study is similar but not identical to the prototype of atmospheric 
shear flows, the Ekman layer. The laminar solutions are identical, and the turbulent 
solutions are comparable. Many turbulence models (for instance mixing-length and 
two-equation models) would fail to distinguish between the present flow and the 
Ekman flow. Deardorff (1970) and Mason & Thomson (1987) presented large-eddy 
simulations of the Ekman layer. Direct simulations of that flow are now being 
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conducted and will be compared with the present ones (Coleman, Ferziger & Spalart 
1989). The flow is also similar to the three-dimensional flows of interest in 
engineering, although we shall find that i t  is not strongly three-dimensional. 

The present flow will probably not allow the validation of the numerical results by 
experiments (a very large facility would be needed), but we now have good 
confidence in direct simulations, and it has several decisive advantages. Like the two- 
dimensional oscillating flow studied by Spalart & Baldwin ( 1987, hereafter referred 
to as the SB flow) it is tractable numerically without any need for inflow/outflow 
conditions or approximations like the multiple-scale procedure applied to the 
spatially developing flat-plate boundary layer (Spalart 1988). The flow also loses 
memory of its initial condition. The turbulence statistics, when expressed in an 
appropriate reference frame and properly non-dimensionalized, depend only on the 
distance from the wall (and the Reynolds number). Thus the Reynolds-averaged 
equations are one-dimensional, which makes the present problem convenient and 
inexpensive for testing turbulence models. The analysis of the direct-simulation 
results and the collection of a statistical sample were also relatively easy ; no phase- 
averaging or triple decomposition, such as the one used in the SB flow, was needed. 
The available computer resources allowed us to simulate the flow over a range of 
Reynolds numbers. Guidelines for the size of the domain and the grid spacing were 
obtained from previous work. 

The theoretical work is an extension to higher order of that applied to the SB flow. 
These basic arguments were also applied by Kazanski & Monin (1961) (and more 
clearly by Csanady 1967) to the Ekman layer; they now appear in textbooks 
(Townsend 1976). One applies straightforward generalizations of well-known two- 
dimensional high-Reynolds-number scaling laws (e.g. the law of the wall) to three 
dimensions, and requires an overlap between an inner and an outer law. The 
analysis can be completed owing to  the simplicity of the flows. It not only produces 
the usual equation linking the friction coefficient and the logarithm of the Reynolds 
number, but also an equation governing the angle a between the wall-shear-stress 
vector and the free-stream velocity. Each equation contains an unknown constant 
(in addition to the KarmBn constant, which is not unique to  this flow and is reliably 
known). These two global predictions, as well as some local predictions, are tested 
against the numerical results a t  three Reynolds numbers. 

We adopted the approach of conducting direct simulations at rather low Reynolds 
numbers, and relying on a theory (with some empirical content) to extrapolate the 
results to higher Reynolds numbers (e.g. to obtain the friction coefficient). It is of 
course essential to first test the ability of the theory to interpolate between the 
results of simulations a t  different Reynolds numbers. In  contrast, in a large-eddy 
simulation one uses a theory (also with some empirical content) to design a subgrid- 
scale model which is included in the simulations. The simulation can then be 
conducted a t  the desired Reynolds number. Our approach has the definite advantage 
of clearly distinguishing two tasks. One task is to obtain accurate numerical results; 
the other is to  apply the theory, which may be revised and have its constants 
adjusted many times. One does not need to conduct a new simulation for each value 
of the constant. Direct simulations are also easier numerically, because the viscosity 
is uniform. On the other hand, in situations and geometries more complex than the 
present ones it would be more difficult to produce a global theory of the flow, as is 
needed in our approach, whereas the large-eddy simulation needs only a theory of 
small-scale turbulence, which is presumed to  be equally valid in any geometry. 



A three-dimensional turbulent boundary layer 32 1 

Direct simulations may be more suitable for fundamental research, but large-eddy 
simulations may be preferable for engineering applications. 

2. Description of the flow and dimensional analysis 
The fluid domain is the half space [ - 00, co] x [0, co] x [ - co, 001 in the x-, y- and 

z-directions. At the wall, y = 0, the no slip condition applies the velocity vector: 
U = (u, v, w) = 0. In  the free stream, y+m, the velocity vector is prescribed as 
a function of time, but independent of x and z :  

U ,  = Uocos(ft), W, = U,sin(ft). ( 1 %  b )  
The velocity vector describes a circle of radius U, centred at (0, 0), and rotates at an 
angular rate f .  The vorticity is zero outside the boundary layer. In  the SB flow, (1 b )  
was replaced by W, = 0;  there the interest was in strong two-dimensional pressure 
gradients and the reversal of the wall shear stress. 

Inside the domain the incompressible NavierStokes equations apply. Dis- 
regarding the initial conditions, this problem has only three parameters, the velocity 
U,, the frequency f ,  and the kinematic viscosity v. The thickness of the laminar 
solution is 6, = (Sv / f ) ; .  The parameters combine into a single non-dimensional 
parameter, the Reynolds number 

We are seeking solutions that are statistically homogeneous in x and z and have 
been evolving long enough to lose memory of their initial condition. If the flow is 
laminar, the large-time solution is periodic : 

U = Uo[cosq5-e-~~b~cos(q5-y/6,)], V = 0, W = U,[~inq5-e-~’~,sin(q5-y/6,)], 

where q5 = f t  is the phase angle. If it is turbulent we expect the statistics, obtained 
by averaging over x and z,  to be again time-periodic. We can expect this behaviour, 
as opposed to one in which the solution ‘runs away’ with quantities like the 
displacement thickness growing without bounds, because the symmetry of the free- 
stream motion (over a period 27t / f )  precludes the accumulation of momentum in any 
particular direction. 

We also note that the equations and boundary conditions are invariant under the 
combined effects of a shift in time by an arbitrary amount T and a rotation by an 
angle fT. If we express the turbulence statistics with respect to a reference frame that 
has the same invariance property (e.g. one aligned with the instantaneous free- 
stream velocity vector), we further expect that they will be independent of phase 
angle once the flow is fully developed. This expectation was supported by the 
numerical results ; after sufficient integration time and for a broad range of initial 
conditions we obtained either the laminar solution, or a turbulent one with statistics 
that satisfied the invariance property. In  this respect, the present problem is simpler 
than the SB flow ; that flow retained a genuine dependence on q5. 

A rather extensive notation is needed because we shall alternate between various 
velocity scales, lengthscales, and reference frames for the normalization of the 
results. This will appear less gratuitous when the theory is presented in 993 and 4. 
Here we introduce enough notation to express concisely what we mean by a fully 
developed turbulent solution. The brackets ( ) or a capital letter denote an average 
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in x and z ,  e.g. U = (u>, and a prime denotes a fluctuation, e.g. u' = u-U. We use 
the notation u" for the normalized velocity U/U,, and so on. We use - to denote 
the components of vectors or tensors referred to  free-stream axes. For instance 
.ii = ucos#+wsin#. Thus we shall encounter notations like (Gii)". Othcr axes will 
be used later; they all have the same invariance property (under a shift in time by 
T). The - and similar qualifiers will be omitted whenever a quantity does not depend 
on the axes, e.g. v or u2+ w2. The distance from the wall can be normalized by 6, or 
by the outer lengthscale L = U,/f. 

A fully developed solution is one in which the statistics, properly normalized and 
expressed in appropriate axes, are independent of time (or phase angle). Thus a 
quantity like (UW)" is a function only of y/6, a t  a given Reynolds number. The 
theory below rests primarily on assertions about the Reynolds-numbcr dependence. 

3. Basic theory 
Up to this point we have presented rigorous dimensional arguments and some very 

plausible, qualitative arguments about the large-time behaviour of the solutions. 
In  this section and the next we introduce some much stronger, quantitative 
assumptions, presumed to be valid only a t  high Reynolds numbers. With this in 
mind, the comparison of the theory and the numerical results can be very instructive, 
and the theory if validated will be useful in predicting quantitative aspects of flows 
at  engineering and geophysical Reynolds numbers. The derivation owes much to 
Coles' 1956 paper. The basic theory is equivalent to Kazanski & Monin's (1961) or 
Csanady's (1967) work on the Ekman layer. The arguments are well known, and will 
be presented without detailed justification. In $4, a t  the expense of one further 
assumption we derive an extra term that is far from negligible a t  the low Reynolds 
numbers considered here. 

We consider only the mean-velocity profiles and the Reynolds stresses and 
examine the consequences of the usual assumption that the flow contains an inner 
and an outer region, each with its own scaling, and that the inner and outer laws 
agree to leading order in an overlap region. This procedure is strongly supported by 
experimental and numerical results a t  least in the case of two-dimensional flows 
without pressure gradient (Coles 1956; Spalart 1988). Furthermore, the inner law has 
been found over the years to be essentially universal. 

3.1. Notation 
For the analysis of the turbulent flows, new velocity scales, lengthscales and axes are 
needed. First a velocity scale u* is introduced, and velocities normalized by u* are 
denoted by the usual + superscript: u+ = u/u*, and so on. The ratio U,/u* will 
appear often and is denoted by Z.  Thus U+ = ZUX, and so on. Near the wall the 
lengthscale is the usual v/u*, and yu*/v is denoted by y+. Away from the wall we 
assume that l / f  is the appropriate timescale for the large eddies (which generate the 
Reynolds shear stress), and therefore define the lengthscale 6 = u*/f. For symmetry 
we shall denote y/6 by y-. The quantity R, = Su*/v = R9/(2Z2) is the relevant 
turbulent Reynolds number. 

A reference frame is needed besides the one aligned with the free-stream vector; let 
i t  point in the direction 9 + #*. We use the notation * as opposed to - for free-stream 
axes; ili = ucos(#+q5*)+wsin($+#*), and so on. The ratio Z and the angle q5* are 
functions of the Reynolds number, to be specified later. 

The quantities involved in the theory are U,  W ,  and the total stresses 
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7, = vdU/dy-(u'v') and 7, = vdW/dy-(v'w'). It is convenient to  use complex 
notation in the (x, 2)-plane ; an underline will identify the complex quantities : 

- - *  

- U = U+iW, 2 = ?,+if,, (3) 

and similarly for the 
- U(0)  = 0, ~ ( c o )  = 1. The mean (Reynolds-averaged) momentum equation is 

variables. These functions satisfy a = ei@* B, 1 = ei@* - 9  $ 

which can be written in the other coordinates, e.g. i ( p - Z )  = df+/dy- 

3.2. De$nition of u* and $* 
In  the basic theory the wall-shear stress vector v[dU/dy(O), dW/dy(O)] gives 
both u* and q5*. u* is identified to the friction velocity u,, given by 
u: = v2[(d?/dy)' + ( d W / d ~ ) ~ ]  (as a result Z is related to the friction coefficient by 
Z = [2/Cf]r). $* is identified with the angle a that the wall-stress vector makes with 
the free stream, i.e. tan (a) = (d@/dy)/(do/dy). To be concise, the choices 
u* = u, and $* = 01 ensure that f+(O) = 1. 

3.3. Outer region 

Here we choose u* for the velocity scale, S for the lengthscale and the $* reference 
frame and assert that this normalization makes the velocity defect (the deviation 
from the free-stream value) and the shear stress independent of Reynolds number, 
i.e. @-e-'$* Z and f+ are functions of y- only. We call these unknown, non- 
dimensional, complex functions fl and f2 : 

- O+-ee-'@*Z =f,(y-), ?+ =f2(y-). (5% b)  

Because of the definition of 6 this is compatible with the momentum equation which 
becomes ifl = fi where the prime denotes a derivative. 

3.4. Inner region 
Here we again choose u* for the velocity scale, and the $* reference frame, but the 
lengthscale is v/u* and we consider the velocity with respect to the wall instead of 
with respect to the free stream. With a rough wall the roughness height would replace 
v /u* .  Thus we assert that @ and f+ are functions of y+ only: 

Q+ =f3(y+), f + = f J y + ) .  b )  

3.5. Overlap region 
We assume the existence of an overlap region in which (5a) and (6a) both apply, and 
obtain 

( 7 )  

Recall that $* and Z are functions of R,, as is the ratio y+/y- = R,, so that ( 7 )  
depends on both y and R,. We first hold R, fixed and differentiate ( 7 )  with respect, to 
log (y), to obtain 

(8) 
dfl ' _  df, 

d(1og y-) - d(1og y+) ' 

We now vary the Reynolds number and therefore the ratio y+/y-; (8) can hold only 
if both sides equal a constant. We do not consider skewing in the wall region a t  this 
level of approximation ; the constant is real and is identified with the inverse of the 



324 P. R. Spalart 

Kirman constant, df,/d(logy-) = df,/d(logy+) = 1 / ~ .  We arrive a t  the usual 
logarithmic law; f3 = log(y+) /~+C,  fi = log (Y-)/K+A, where C is real but A is 
complex. Note that there are several other ways to arrive a t  the log law. Equation 

A + e-i$* Z = -log R, + C. (9) 
(7) becomes 1 

K 

Its real and imaginary parts are 

(10) 
1 

ZCOS#* = -logR,+C-A,, 
K 

Equivalent equations were obtained by Csanady (1967) for the Ekman layer over a 
rough wall. Equation (10) primarily involves the friction coefficient and the Reynolds 
number, and is similar to the two-dimensional equation. The most interesting 
prediction of this theory is ( l l ) ,  which has no equivalent in two dimensions. It is 
valid over smooth and rough walls, and implies that a t  high Reynolds numbers #* 
tends to zero, although slowly (like l/logR,). Thus the Ekman-like spiral becomes 
increasingly shallow as R, increases. To validate the theory, we can test (10) and (11). 
Directly testing the local assumptions ( 5 ) ,  (6) will be helpful, if we restrict them to 
the appropriate regions. 

4. Higher-order theory 
We found that the basic theory (specifically, (10) and (11)) is not in good 

agreement with the numerical results, but that the agreement improves slightly a t  
higher Reynolds numbers. This prompted us to regard that theory as providing only 
the leading term of an expansion in terms of the Reynolds number, and to derive a 
higher-order term which had the potential of improving the agreement at the low 
Reynolds numbers we treated. The arguments are just as simple as in the basic 
theory; we are not proposing a more elaborate concept of what generates and 
controls the shear stress. However, we do need to be specific about which of the 
properties of the constant-stress layer (e.g. the log layer, or the linear growth of the 
mixing length, or another property) remain valid with a non-constant stress, and 
which are violated. This is a matter of controversy and we made our choice primarily 
based on our numerical results in the present flow and in the sink flow (Spalart 
1986b). Note that in both of these flows the stress variation is caused by a favourable 
pressure gradient; if it were caused by suction, or compressibility, a different 
behaviour may be observed. One may even wonder what the effect of a strong 
adverse gradient would be (Perry & Schofield 1973) ; the results in the SB flow tend 
to support our assumption, but are not fully conclusive. 

4.1. De$nition of u* and $* 
To improve an asymptotic theory, especially one that is rather empirical, the first 
step is to identify its most severe inconsistency. The starting point is the fact that 
(6a) and ( 6 b )  are not compatible with the momentum equation, which can be written 
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I n  the basic theory we simply observed that as R, becomes large (12) implies 
df+/dy+ 4 1, meaning that f+ = 1 to  leading order. Equation ( 6 b )  was never used. 
We propose to refine the theory enough for the momentum equation to be exactly 
satisfied, even at  finite R,. Locally this is not a small change, but the wall region is 
thin, so that globally it results in a higher-order correction. 

We also observed that if (5a) and (5b) apply the momentum equation is satisfied 
if ifl = fi. This implies that in the viscous sublayer, where ( 5 a )  does not apply, (5b) 
cannot apply either. The direction of the shear stress rapidly varies in the wall region. 
To accommodate this in the theory we need to redefine $* ; the new definition is equal 
to a only to leading order. Note that the deep reason for introducing #*  as a variable 
is that the differential equations (not the boundary conditions) governing the flow 
are invariant by rotation. In the two-dimensional time-dependent flow an arbitrary 
phase shift was introduced for similar reasons. The only reason for assuming 
$* = a earlier was the possibility that ( 5 b )  would apply all the way to the wall 
(y- = 0). We now recognize that this is true only to leading order. On the other hand, 
u* is still taken equal to u, (presumably, a t  even higher orders u* would differ slightly 
from u ~ ) ,  and therefore instead of P+(O) = 1 we have 

;+@) = ei(a-#*). 

Numerical results obtained in the sink flow (Spalart 1986b) and here strongly 
indicate that the law of the wall (6a) is very general and in particular is insensitive 
to pressure gradients. This is with u* defined as the square root of the shear stress 
a t  the wall. Incidentally, this contradicts any theory that uses the local shear stress 
for a velocity scale, as well as those that assume that the mixing length still varies 
linearly when there is a pressure gradient (Berg 1975). This will be illustrated in 
figure 9. In  summary our approach is to preserve (6a) near the wall, (5a) and (56) 
away from the wall, and to demand that the momentum equation (4) be exactly 
satisfied everywhere. We surrender any equation of the type of (6b), and do not 
require that $* equal a. 

4.2. Implementation 

I n  order to apply the momentum equation all the way from the wall to the free 
stream we first obtain a composite expansion for the velocity profile. We define the 
function f5 as the deviation from the log law in the viscous sublayer: 

113) - 

The function f5 is real and for y+ larger than about 50, f5(y+) is identically zero. The 
composite expansion is then written : 

fl (Y-) +f5(Y+). (15) o+ - e - ~ *  z = - 

Compare with (5a).  Implicitly, we are extending f, down to y- = 0 by a log layer. 
This procedure is standard in the field of matched asymptotic expansions (Van Dyke 
1975), although we cannot pretend to be as systematic as if we had a well-defined, 
closed set of equations to solve. It is very similar to Coles' (1956) procedure, but we 
preferred to include the log component infl rather than in!,. This brings out a finite 
universal constant (C,) (independent of three-dimensionality or pressure gradient), 
as shown below. 

We combine the momentum equation dz+/dy- = i(@-e-i$*Z) with (15) and 
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integrate with respect to y- to  express the global momentum balance. We 
obtain 

i+(O) = - i  C,+- , (16) 

(17% 6 )  

- [ 21 
c, = p , ( Y - )  dy-2 c, = I, f5(Y+) dY+. 

50 

where 

The upper bound in the C, integral is not critical. However the uncertainty in the 
values of K and C and the fact that C, is obtained as the difference of two numbers, 
each about 10 times as large as C, itself, introduce an uncertainty of the order of 10 YO 
for C,. We computed C, x -52 from numerical two-dimensional flat-plate data, 
assuming K = 0.41 and C = 5 (see the appendix in Spalart 1988, where it was called 
-D3) .  Coles (1968) used a fit to experimental data and obtained a somewhat larger 
value : C, = - 64, again with K = 0.41 and C = 5 .  This difference is not large enough 
to invalidate the conclusions to be drawn in $5. 

In  the basic theory, C, = i and C, is neglected. In  the higher-order theory we are 
interested in the term of order l/Rt. To that order, using (13) and (16) we obtain 
again C, = i ,  and 

(18) 

This defines $*, superseding the assumption $* = a of the basic theory, and 
completes the higher-order theory. As expected the difference between a and $* is of 
higher order than their values (which are of order l/Z). The form of (10) and (11) is 
unaffected. Note that a priori the law of the wall (6a) should be applied in a reference 
frame directed at  an angle a, not $*. However, the difference between the two is too 
small to affect the theory a t  this order. 

c5 $* =a+--. 
Rt 

5. Numerical results 
5.1. Parameters and numerical details 

Results will be presented a t  R, = 500, 620 and 767. The lowest value is close to the 
minimum at  which turbulence can be sustained (at R, = 400, the flow relaminarized) ; 
the other two were chosen to provide a geometric progression of the turbulent 
Reynolds number R,, with a ratio of about d2. R, took the values 466,653, and 914. 
Periodic conditions were used in the homogeneous directions, and the size of the 
numerical periods scaled with 6: A ,  = A ,  x 26. The thickness of the turbulent region 
is about 6. The effect of A ,  and A,  was tested by rerunning the R, = 500 case with 
A ,  = A ,  x 46 and the same grid spacing, time step, and so on. The values of Z and 
$* were altered by less than 0.5%. The differences in the velocity, stress and budgets 
profiles were also insignificant. This test indicates that  periods equal to 26 are 
sufficiently large, a t  least for our purpose. I n  contrast to two-dimensional flows, the 
constant change of direction of the flow presumably prevents the formation of very 
long structures in the streamwise direction. 

The grid spacing was Ax+ = Az+ z 7, and in the y-direction there were at least ten 
grid points within 10 wall units of the wall (same resolution as in Spalart 1988). The 
grids had 128 x 50 x 128, 192 x 64 x 192, and 256 x 80 x 256 collocation points a t  the 
three Reynolds numbers. The spectral numerical method was described by Spalart 
(1986~). Observe that the resolution was chosen using the same lengthscales (6 and 
v/u*)  that entered the theory. However, this does not mean that the validation of the 
theory is circular, because the results are not (and must not be) significantly 
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dependent on the resolution. This is confirmed by the test of A here, and the test of 
grid spacing by Spalart ( 1988). 

The initial conditions were the sum of the laminar profile and random disturbances 
of finite amplitude, typically +20% of Un. Since only the turbulent state is of 
interest there is no point in starting from small disturbances (in addition, the 
turbulence appears to be subcritical). When available, the final state of a lower- 
Rcynolds-number simulation was used as the initial condition. While the flow was 
being establishcd, a coarser grid was used; halving the number of points in each 
direction reduces the computer cost per unit time by a factor of about 20, with the 
present method. Simulations on such coarse grids produce acceptable large eddies 
(having longer timescales, these take more time to establish) but are not accurate 
enough near the wall, since they may overpredict the friction coefficient by as much 
as 20% at  a given Reynolds number (Spalart 1988, figure 2). With a spectral method 
it is a simple matter to interpolate from one grid to another ; the interpolation is often 
done in steps, for instance from 128 points to 192, and then to 256 for the ‘true’ 
simulation. 

Another helpful measure, before the statistics are taken, is an over-relaxation 
procedure applied to the mean profile. This profile often approaches its steady state 
in a very sluggish manner (especially when the pressure gradient is held constant, as 
opposed to the mass flux). The implementation is slightly more involved than for 
flows with steady boundary conditions. Let us write the momentum equation, 
formally, duldt = rhs. It may be split into mean and fluctuations (the Fourier series 
used in x and x do this naturally) to produce: dU/dt = ( rhs)  = R H S ,  du’ldt = rhs’. 
The latter equation is not amenable to over-relaxation, because of the stability 
limitations of the Runge-Kutta time-integration scheme. On the other hand the 
mean component is a good candidate since it is in the process of approaching a steady 
state, and is much less susceptible to numerical instability. For convenience we 
switch to complex notation again: dQ/dt = R m .  Now since _U = e’@n we have 
dU/dt = ifu+ ei4 doldt.  Then the equation driving a is dQ/dt = e-i@ [RHS - ifUJ ; 
when equilibrium is reached R B  (which contains the pressure gradient and the shear 
stress) and ify are in balance, which amounts to (4). During the transient we 
artificially accelerate the evolution of 0 by writing dD/dt = Qe-’@ [RHS-if_UI, 
where SZ is a number larger than 1. In  terms of _U itself (which is the variable used in 
the code) this equation is d_U/dt = SZ[RHS - ifa + iju. Essentially, we devised an 
equation that differs from the Navier-Stokes equation, but has the same steady 
state, and reaches it faster. Values of SZ up to 10 have been used without stability 
problems, depending on the grid, Reynolds number, and so on. In practice this device 
makes the approach to the steady state several times as fast as would happen 
otherwise. It can be easily used for other flows including two-dimensional boundary 
layers, channels, and Ekman layers (with steady boundary conditions, it reduces to 
dU/dt = SZ R H S ) .  

The stability of the time integration is enhanced by solving the equations with 
respect to a reference frame that is moving at a velocity intermediate between that 
of the wall and that of the free stream. At best, on small-disturbance problems, this 
allows one to double the time step without losing the numerical stability. In  a 
turbulent flow, the gain is typically a 50 % increase in the allowable time step, which 
is appreciable. Furthermore, the time step is continually adjusted to yield a 
prescribed peak Courant number; as a result it can be set close to the stability limit, 
without any risk of numerical instability. Overall, the measures taken to contain the 
cost of the simulations (using restart files, coarse grids during transients, over- 
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FIGURE 1. Comparison of basic theory and numerical results. ---, (10) with c$* = a ,  K = 0.4t, 
and various values of A , ;  0, simulations. 

0.055 0.057 0.059 0.061 
1 I Z  

FIGURE 2 .  Comparison of basic theory and numerical results. ~ - -, (1 1) with c$* = a and various 
values of A ,  ; 0, simulations. 

relaxation, and so on) probably reduced it by a factor close to 10, compared with a 
straightforward strategy. Even then, the cost was in excess of 1014 operations. 

Fully developed solutions were obtained in the sense that 2, a, and quantities like 
the peak turbulent kinetic energy reached stable values and then only varied 
slightly. The time-sample length for the statistics was a t  least 1.8/j, which combined 
with the spatial average over an area ( ~ c Y ) ~  was sufficient to produce very smooth 
profiles and balanced moment,um and energy budgets over the whole depth of the 
turbulent layer. The global momentum balance (the integral of (4)) was satisfied to 
within 1 % .  Far from the wall (y- larger than about 0.8) the timescales of the 
turbulence are longer, making the effective sample smaller, so that the end of the 
spiral on the hodograph is not perfectly smooth. Note that the prominent quantities 
(u*, $*) result from the near-wall behaviour. 
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FIGURE 3. Comparison of higher-order theory and numerical results. ---, (10) with $* given by 
(18), K = 0.41, C, = -52, and A,-C = -0.45; 0, simulations. 
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FIGURE 4. Comparison of higher-order theory and numerical results. ---, (11)  with q5* given by 

(18), K = 0.41, C, = -52, and A,  = 5.5; 0, simulations. 

5.2. Global results 
At Reynolds numbers R, = 500, 620, and 767 the values of u*/U, (i.e. 1/Z) were 
0.0610, 0.0583, and 0.0561 respectively. They are typical of low-Reynolds-number 
boundary layers. The values of a were 0.458, 0.405, and 0.365 radians. These are 
much lower than the laminar value (in w 0.89) and decrease as R, increases, as 
predicted by the theory. Figures 1 and 2 are tests of the basic theory ; the agreement 
with (10) is fair, but with (1 1) it is unsatisfactory in that the slopes of the theoretical 
and numerical curves differ by a factor close to 3. In figures 3 and 4, the higher-order 
theory is used and the agreement is excellent. The values K = 0.41 and C, = -52 were 
used throughout. Based on (18), the values of $* are 0.347, 0.325, and 0.309 at the 
three Reynolds numbers. The results indicate that the values of the adjustable 
constants are A,  w 4.6k0.3 and Ai w 5.5k0.3. The uncertainty reflects the slight 
disagreement remaining in figures 3 and 4, and the uncertainty on the values of K ,  C, 
and C,. The agreement is much better than in the SB flow; this is most probably 
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FIGURE 6. Hodograph, @ versus @. ---, laminar flow; -, turbulent flow, R, = 500. 

B 

because the present flow is constantly turbulent, whereas the two-dimensional flow 
experienced partial relaminarization near the wall twice per cycle. 

We may compare the values of the adjustable constants with the ones prevailing 
in the Ekman layer. We are not at all implying that they should be equal; although 
the scaling arguments are the same in the two flows, the physics of the large eddies 
are not, especially if the latitude of the Ekman layer is not in (Coleman et al. 1989). 
Csanady (1967) reports experimental values between 7 and 12 for Ai, a much larger 
scatter than in our results. Townsend (1976) quotes A, = 10.7. Note that they both 
relied on the basic theory, which overestimates Ai (in our results a t  R, = 500, 
2 sin a equals 7.2 but Zsin $* = 5.6). For A,, the comparison is not possible because 
Csanady considered rough surfaces. In this flow, as in the SB flow, the #* equation 
(11)  is independent of the type of surface, but the other equation (10) is not. 

5.3. Local results 
We now present local quantities to  describe the flow in more detail and to test the 
local assumptions, (5) and (6). The higher-order equation (18) is used to define $* for 
the remainder of the paper. It gives consistently better collapse of the results at 
different Reynolds numbers, although the difference is often slight. Figure 5 presents 
the mean velocity profiles l? and @, displaying the overshoot and the skewing. The 
peak value of the cross-flow @ is about 20% of the free-stream velocity. In  figure 
6 the hodograph @ versus l? is found to be much shallower in turbulent than in 
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FIGURE 7. Mean-velocity profiles. (a) Rl = 500; (b )  R, = 767. --, U+;  ---, - W'; 0,  location 
of 8 ;  straight line log (y+)/0.41+5. q5* given by (IS). 

laminar flow. This is consistent with the behaviour of turbulent Ekman layers. The 
tangents a t  the origin indicate the size of a. 

Figure 7 tests assumption (6a) .  o+ and - W+ are shown in a semilogarithmic plot 
versus y+. Equation (6a )  is strongly supported by the results : a t  fixed y+, I!? becomes 
Reynolds-number independent over a larger range and I W+l decreases with Reynolds 
number. Note that o+ varies much less than W+ as a function of R,. The plot 
also reveals a long logarithmic layer a t  R, = 767, very close to the usual 
f 3  = log (y+)/0.41+ 5.  

Figure 7 can also be used to test assumption (5a),  by examining the curves with 
reference to the solid circles, placed at y = 6, and the free-stream velocity (a y- scale 
is also provided). One is then considering o+(y-)-@ and @+(y-)-W+,, the 
quantities that enter (5a) .  The agreement between figures 7 ( a )  and 7 ( b )  is good down 
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to y- x 0.1. The upper part of the R, = 767 curve is a little rough, but the figure 
clearly supports the assumptions made for the velocity profile (5a), ( 6 a ) .  

In figure 8 the Reynolds and totaI shear stresses are shown at R, = 500 and 767 .  
We are testing assumptions ( 5 b )  and ( 6 b ) ;  $* axes and the u* velocity scale are used. 
For this and most of the remaining figures composite plots were made with the wall 
region up to y+ = 50 and the outer region up to y- = 1. In the outer layer (right side) 
the comparison is very good. For fz, the figure illustrates the rapid turning near the 
wall that was mentioned earlier. The figure shows conclusively that the Reynolds- 
number independence of the shear stresses would not be obtained with the 
lengthscale, because the ratio a/&, increases by a factor 1.4 from R, = 500 to 767 (on 
the other hand, the ratio S/L (equal to 112) changes by only 9%, so that the results 
would be about as good if plotted versus y / L  instead of y-). Similarly, the velocity 
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scale U i  is ruled out because (u*/UJ2 varies by 19%. Finally, the free-stream axes 
would give about as good results as the q5* axes away from the wall, but not near the 
wall since .i" is not close to  1. 

Near the wall, figure 8 confirms that ( 6 b )  is far from being satisifed, but that a t  a 
fixed y+ value T+ approaches 1 as R, increases, i.e. the near-wall layer becomes more 
two-dimensional and is closer to being a constant-stress layer. The stress gradient in 
wall units is proportional to Z3/R; and therefore tends to zero rapidly. Note that the 
magnitude of the total stress decreases away from the wall ; in that sense the pressure 
gradient is favourable. Note also that with the higher-order theory +: is not exactly 
0 at* wall, because q5* is not exactly equal to a. Near the wall the third shear stress, 
- (u'w')+, takes rather large values and exhibits a significant dependence on Re. I ts  
peakzalue decreases from 0.97 at R, = 500 to 0.65 at Re = 767. Away from the wall 
- (u'w')+ shows no significant trend versus Reynolds number. Note that this 
Reynolds stress has no effect on the mean flow, since the flow is homogeneous in the 
x- and z-directions. This would not be the case, for example, on a swept wing. 
However this stress would only have a weak effect in the mean momentum equation, 
and thus attention has been focused on - (u'v')+ and - (v'w)+ (Bradshaw 1987). 

Figure 9 supports the decision made to preserve ( 6 a ) ,  rather than ( 6 b )  or assump- 
tions about t,he behaviour of the eddy viscosity or the mixing length, in a more 
direct manner than figures 1 4  did. The quantities Kd@/d(log y ) ,  K]dU+/d(log y) l ,  
Ir+,l/[~ldU'/d(logy)l], and I7~1"[~ldU+/d(logy)1] are shown in the wall region of the 
flow a t  R, = 767. Here 7R is the Reynolds stress. The first two quantities stem 
from two- and three-dimensional versions of the log law, the third is the ratio of the 
eddy viscosity to KYU*, and the fourth is the ratio of the mixing length to K Y .  In  a 
classical constant-stress layer, for y+ larger than about 50 all these quantities equal 
1 .  We find here, as we did in the sink flow, that under the effect of a favourable 
pressure gradient the quantities derived from the log law deviate from 1 much less 
than those derived from the eddy viscosity or mixing length. If we had plotted the 
square of the mixing length, which may be equitable since i t  is what enters the 
turbulence model, the difference would be even larger. Note that the two- and three- 
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FIGURE 11. 500 ; 

dimensional log laws bracket the ideal value of 1, with the two-dimensional version 
performing appreciably better. The higher-order definition of q5* was used ; with the 
basic definition, the two-dimensional law is not quite as good. 

The shear stresses are considered again in figures 10 and 11. Figure 10 compares 
the direction of the mean-shear vector (dU/dy, dW/dy) and the Reynolds-stress 
vector ( - (u’d), - (v‘w’)). The curves are rather rough away from the wall, because 
they represent the ratio of small quantities, but one can still draw the following 
conclusions. The directions are close throughout the layer, usually within lo”, 
suggesting that in the present flow the turbulence is only weakly three-dimensional. 
This test was conducted by Deardorff (1970) in the Ekman layer, with the same 
result. The direction of the larger principal axis of the tensor ((uf2), (u’w’), (u’w’), 
(w”)) was also examined and found t o  be very close to  the ones plotted in figure 10. 
Figure 11 shows the structure parameter, the ratio of the modulus of the shear stress 
to the trace of the Reynolds-stress tensor (Bradshaw, 1967). I ts  average value away 
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from the wall is about 0.13, appreciably lower than the usual two-dimensional values, 
which are 0.15 to 0.16; this is consistent with experimental observations in three- 
dimensional flows (Bradshaw 1987). The curves are too rough for one to distinguish 
a Reynolds-number trend ; according to the theory, a, will be slightly lower at high 
Reynolds numbers. 

The behaviour of the normal Reynolds stresses (g2)+, ($'')>', and (a2)>' is 
predictable, see figure 12. Recall that they slightly increase with Reynolds number 
(Spalart 1988). They are close to the usual two-dimensional values near the wall, and 
farther up (t.Y2)+ becomes larger than (g2)+, because of the skewing. The 
undulations seen for y- larger than 0.2 would be removed by a longer time sample, 
but the trend for (a2)+ to exceed (2;")' is genuine and is observed at all Reynolds 
numbers. 

5.4. Reynolds-stress budgets 
The budgets of the six Reynolds stresses and the trace of the tensor are shown in 
figure 13. All the terms add up to zero very well near the wall, and rather well away 
from the wall, considering the expanded scale. The viscous term is not split into 
diffusion and dissipation. The diffusion can be computed from the Reynolds stresses 
themselves, if desired. The same applies to the convection term and the production. 
The time-dependent term arises because the reference frame is not fixed. This term 
is absent for the trace (figure 13a) and (C2)+ (figure 13c) and is found to be small for 
the other terms (in addition, it decreases with increasing Reynolds number). This 
shows that the timescale l/f is much longer than the scales on which the turbulence 
is produced and dissipated. Deardorff (1970) observed the same trend and concluded 
that the rotation had very little effect on the turbulence. Such an inference ignores 
hidden effects such as a possible alteration of the triple-correlation terms, and must 
be made with caution. Curvature effects, for instance, are known to be much larger 
than predicted from order-of-magnitude arguments. 

In  general the budgets follow-the usual patterns. The Reynolds-number 
dependence is weak except for - (u'w')+ near the wall. Recall that the budgets were 
normalized by u* and v/u* near the wall, and u* and S (or f) away from it, to be 
consistent with (5) and (6); $* axes were used. Notice the reversal of the pressure 
transfer between (P)+ and ( z i f 2 ) +  away from the wall, and the sign change of the 



336 P .  R.  Spalart 

Y+ Y -  

FIGURE 13(u+). For caption see p. 338. 
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FIGURE 13. Budgets of the Reynolds stresses. R, = 767. -, convection term; ---, viscous 
term ; . . . , pressure term ; . -. , time-dependent term ; + , total. Left plot normalized b y c / v  ; 
right p k b y  ~ * ~ / h ’ .  (a$’)+ + (P)+ + (a’)+ ; (6) (a”)+ ; ( c )  (P)+ ; (d )  (a’)+; ( e )  - (u’v’)’; 
(f) -(v’w’)+; (9) -(u‘w’)+. $* given by (18). 

----- 
contributions to - (u’v’)+ near y- = 0.3. The - (u’w’)+ budget is dominated by the 
convection term (turbulent diffusion), on the gain side, and the viscous and pressure 
terms, on t h e k s s  side. The time-dependent term is weak, which suggests that the 
non-zero - (u’w‘)+ stress is primarily due to diffusion from other elevations where 
the tensor has a different orientation, and not from the local effect of the tensor 
lagging the reorientation a t  a rate f. 

6. Discussion and conclusions 
Direct numerical simulations of a simple turbulent boundary layer that is three- 

dimensional in the mean were conducted. The flow is homogeneous in the directions 
parallel to the wall, so that no multiple-scale approximation or inflow-outflow 
conditions were needed. The turbulence was found to be only weakly three- 
dimensional, as measured by the close alignment of the Reynolds stresses with the 
mean shear, or the comparison of the rotation rate with the timescales of the 
turbulence. This reflects the gradual application of three-dimensionality. Inci- 
dentally, this makes the flow difficult to classify as either shear-driven or pressure- 
driven (Bradshaw 1987). A sudden application could easily be implemented with the 
present method, but the analysis of the results will be much more involved and one 
may need a costly ensemble average (T.-H. Shih, personal communication). The 
present results should still be useful for the initial tests of turbulence models with 
three-dimensional capabilities. The structure parameter is appreciably lower than in 
two-dimensional flows. 

The numerical results, both local and global, entirely support the set of Reynolds- 
number scaling laws that was presented. The theoretical arguments also apply to an 
important geophysical flow, the turbulent Ekman layer (however, the two flows are 
likely to differ quantitatively, notably in the values of the adjustable constants A,  
and Ai). The basic theory, equivalent to published theories of the Ekman layer, gave 
fair agreement with local qua,ntities but failed to accurately predict some of the more 
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sensitive quantities, namely the magnitude and direction of the wall shear stress. 
The direction is the most sensitive quantity. A higher-order theory was derived, 
based on the same arguments but refined to satisfy the momentum equation across 
the entire domain. With this theory the agreement is excellent, and we can 
extrapolate to high Reynolds numbers with confidence. 

The higher-order theory was developed to explain the numerical results ; however, 
it could have been developed independently. The key steps (retaining (6a )  even with 
pressure gradient and using (4) instead of (6b ) )  are supported by numerical evidence 
gathered in the sink flow, the oscillating flow, and the present flow. We do not know 
of any rigorous theoretical argument that could prove or disprove them, and cannot 
estimate with full confidence how general they are. It may even be that they are valid 
only for favourable pressure gradients. Note also that the higher-order term has no 
equivalent in two dimensions, and that the idea of requiring the momentum 
equation to be exactly satisfied may not be so helpful in spatially developing flows, 
because the momentum equation is then quite unwieldy (Berg 1975). 

The importance of the higher-order term in real planetary boundary layers is 
probably slight. We base this estimate on the fact that the correction (18) is roughly 
equal to ylog/cY where ylog is the location at which the velocity profile first agrees with 
the log law (this occurs for y:og z 50, and lC51 x 50). Over rough terrain, ylog may be 
a few tens of metres a t  most, so if S is a few kilometres, (18) yields a- q$* of the order 
of 0.01. I n  that case, the higher-order term is not needed in planetary-boundary-layer 
models. It is, however, very important for the validation of the theory using low- 
Reynolds-number simulation results, and to obtain accurate values for A ,  and Ai. 

Finally, it is remarkable that, even a t  Reynolds numbers close to the minimum a t  
which turbulence is sustained (and with values of u*/U,  in excess of 0.06) the 
comparison of theory and numerical results appears free of the parasitic ‘low- 
Reynolds-number effects ’ that  effect the two-dimensional flat-plate boundary layer 
(Coles 1962). One would have expected the simpler steady two-dimensional flow to 
agree better with the theory. Here we must add a note of caution; our own 
simulations of the flat-plate layer also revealed weaker low-Reynolds-number effects 
than found by Coles, as measured by the strength of the wake (although there were 
other issues involved such as the accurate measurement of u,, and the exact values 
of K and G). That disagreement remains unexplained, even after some of the obvious 
possible causes (such as lack of numerical resolution) were explored (Spalart 1988). 
On the other hand the multiple-scale approximation, used in the flat-plate flow, was 
not needed here. In  that respect the present simulations are more reliable. 

The author thanks Dr J. Buell and Mr G. Coleman of NASA Ames Research Center 
for reviewing the manuscript. Professor P.  Bradshaw of Stanford University made a 
number of excellent suggestions. Some of the calculations were performed on the 
NAS computers. 
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